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Executive Summary 

Extreme events such as floods, landslides, wildfires, and pandemics pose a significant risk to 
transportation systems and public health. The state of North Carolina is particularly fragile to these 
events due to its unique and complex geographical conditions, ranging from mountain (west) to 
the sea (east). Moreover, NC state has been experiencing a variety of extreme events, such as 
earthquakes, landslides, and hurricanes that have led to road closures, travel delays, and other 
disruptions. These incidents resulted in substantial economic and labor cost, especially impacting 
freight movement due to necessary re-routing operations. Given the increasing frequency and 
severity of such events, there is an urgent need to understand their potential impact on the NC 
transportation infrastructure, particularly regarding the risks of road closures affecting freight 
routing. 

To address these challenges, this project aims to conduct a comprehensive study on the risk and 
resiliency profiles of North Carolina’s public roads, focusing primarily on routes critical for freight 
transportation. We developed a state-of-the-art geospatially explicit analytics platform, termed as 
“Geo-FRIT,” for the analytics of transportation resilience. This web-based analytics tool offers an 
approach to quantify the risks and resilience associated with the NC transportation network. We 
collected and processed a suite of data as required in this framework, including extreme events, 
transportation assets, environmental, and socio-economic data. Then, transportation resilience of 
NC roadway system was estimated based on a model of risks and criticality. The Geo-FRIT 
framework supports risk-based routing analysis and spatial simulation-based scenario analysis, 
providing integrated advanced freight routing modeling capabilities. We developed a web GIS 
dashboard for the management, analytics, and mapping of resilience-related data (including model 
input and output) in this project. This Web GIS dashboard greatly facilitates the sharing and 
dissemination of spatially explicit transportation resilience results obtained from the resilience 
analysis module. The URL of the web site of the Geo-FRIT system including the Web GIS 
dashboard is available at: https://sites.charlotte.edu/geofrit/  

Our findings include:  

1) Efficient geoprocessing and integration of diverse data related to extreme events, 
transportation asset warrant the feasibility for transportation resilience analysis. Routine 
collection and update of relevant data for various extreme events are of necessity.  

2) Specific approaches or models need to be developed for threat likelihood modeling of 
alternative types of extreme events, depending on, for example, the availability of relevant 
data and the driving mechanisms of extreme events. 

3) Automated handling of routing analysis and pre-/post- data processing are of great help for 
detour analysis as required by the estimation of consequence (a component of 
transportation risk).   

4) The Geo-FRIT framework holds great potential in the resilience analysis of alternative 
transportation networks and provides spatial decision support for stakeholders in terms of 
transportation planning or management in need of explicit consideration of resilience in 
response to various types of extreme events.  

  

https://sites.charlotte.edu/geofrit/
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1 Introduction 

1.1 Background 

Extreme events (such as floods, landslides, wildfires, and pandemics) pose a significant risk to 
transportation systems and public health. The state of North Carolina is particularly fragile to these 
events due to its unique and complex geographical conditions, ranging from mountain (west) to 
the sea (east). Moreover, NC state has been experiencing a variety of extreme events, such as 
earthquakes, landslides, and hurricanes that have led to road closures, travel delays, and other 
disruptions (NCDOT, 2021). These incidents resulted in substantial economic and labor cost, 
especially impacting freight movement due to necessary re-routing operations. Given the 
increasing frequency and severity of such events, there is an urgent need to understand their 
potential impact on the NC transportation infrastructure, particularly regarding the risks of road 
closures affecting freight routing. 

To address these challenges, this project aims to conduct a comprehensive study on the risk and 
resiliency profiles of North Carolina’s public roads, focusing primarily on routes critical for freight 
transportation. The initiative aims to develop a state-of-the-art geospatial platform, termed as 
“Geo-FRIT,” designed for comprehensive transportation data integration and modeling. This web-
based analytics tool will offer a unique approach to understanding the risks and resilience 
associated with the NC transportation network. Geo-FRIT is designed to facilitate data collection 
and sharing among various divisions of the department of transportation (DOT) and will provide 
on-demand, risk-based routing analytics. The platform also integrates advanced freight route 
modeling functionalities with respect to disaster data produced by spatial simulation-driven 
scenario analysis. 

While the Geo-FRIT platform aims to offer a robust solution for transportation risk assessment 
and resilience planning, several challenges exist. First, data management presents an essential 
challenge, given the diversity of data types involved, ranging from road networks and space-time 
disruptive events to accidents and population statistics. Second, the computational demands of 
scenario and routing analysis further entangle this by generating simulated geospatial data. Finally, 
as extreme events continue to evolve in frequency and intensity during the era of climate change, 
the models must be adaptable to these changing patterns.  

1.2 Research and Definition 

Based on the NCDOT Research Idea (#2022-018), the NCDOT Logistics & Freight Division 
sought to understand the risk and resilience aspects of freight routes, especially when faced with 
road closures, delays, detour, or significant changes in road functionalities. It is essential to 
conduct analysis on the NC road system regarding the potential risk and additional cost (e.g., time 
and money) for fighting management in response to extreme events. This comprehensive study on 
risk and resilience will significantly inform policy and decision-making processes for NCDOT and 
related entities, such as planners and industry experts, especially during extreme scenarios like 
landslides, floods, or wildfires. Anticipated data outputs, such as GIS data layers and a 
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comprehensive statewide dashboard, will streamline the evaluation of risk and resilience for North 
Carolina's freight routes. Implementing these analytical tools will notably enhance road safety, 
community transportation planning, public health and emergency management. 

1.3 Research Objectives 

The overall goal of this project is to develop a spatially explicit analytics framework that can 
quantify, optimize, and visualize the risks (due to disruptive events) and costs (e.g., time, money) 
intrinsic in freight routing caused by degradation of road functionality, such as road closure or 
delay (see Figure 1.1). To address NCDOT research needs, this project established five objectives 
for developing the Geo-FRIT tool. 

● Objective 1: Literature survey to investigate the analysis of risk and resilience in the 
(re)routing analysis on NC road network with respect to potential extreme events. 

● Objective 2: Conduct event-driven spatial simulation for scenario analysis of freight 
(re)routing. It supports us in understanding the response of freight networks before, during 
and after the occurrence of different degrees of disruptive events.  

● Objective 3: Develop a risk cost (e.g., time and money) framework to underpin freight 
re(routing) analysis for optimizing (minimizing) the risks and costs associated with 
degradation of road functionality (e.g., road closure) caused by disruptive events. 

● Objective 4: Build a geodatabase of risk and resilience profiles analysis. It strives to store 
different data for this project, including but are not limited to road network, historical 
space-time extreme events (e.g., landslides, floods, and wildfires), and social variables 
(e.g., population, social vulnerability indices). 

● Objective 5: Develop GIS-based dashboard for risk mitigation and scenario analysis. 
Moreover, the dashboard will be used to support data management, geo-visual analytics, 
and mapping. We will use GIS-based scientific workflows to automate the identification 
analysis and integrate them to the dashboard. 

1.4 Report Organization 

The rest of this report is organized in the following structure. Section 2 elucidates a literature 
review on extreme events and the resiliency of transportation systems. Section 3 describes the 
methodology and the corresponding results. Section 4 presents findings and conclusion from 
research results in Section 3. Section 5 discusses a series of recommendations made for future 
directions.  
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Figure 1.1. Design of the Geo-FRIT framework for risk-based freight routing analytics (Geo-FRIT: 
a web-based geospatial analytics tool for quantifying freight risk and resilience in transportation). 
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2 Literature Review 

2.1 Extreme Events 

North Carolina is under the impact of a series of extreme events that have attracted increasing 
attention (https://www.readync.gov/stay-informed/north-carolina-hazards). Extreme events can be 
grouped into different categories such as meteorological, geological, and climate change-related 
(NASEM, 2021; NCDOT, 2021). The frequency, intensity, and duration of these extreme events 
often lead to disastrous impact on human and society (Crimmins, 2022; USGS, 2023). In recent 
years, there has been a growing interest in studying extreme event occurrences and quantifying the 
effects of climate change on natural disasters so as to better mitigate their impacts. For example, 
extreme weather events such as hurricanes can significantly impact transportation systems by 
reducing visibility, causing slippery road conditions, increasing the likelihood of collisions, and 
even damaging transportation infrastructure (NASEM, 2021). In this project, we focus on the 
following extreme event types: floods, wildfires, and landslides for the evaluation of the resilience 
of NC transportation systems. 

Flooding is an essential type of extreme event in North Carolina with particularly severe impacts 
on transportation systems. It can be caused by different mechanisms such as weak drainage and 
heavy rainfall, especially during hurricanes. Intense rainfall during hurricanes often leads to 
flooding, making roads inaccessible and increasing the risk of accidents, particularly when drivers 
underestimate the depth of water or the strength of currents. Additionally, debris and fallen trees 
can block roads and create dangerous driving conditions, potentially causing accidents. Severe 
flooding not only disrupts the functionality of transportation system (Chan & Schofer, 2016), but 
also leads to negative impact on local economies and emergency response efforts (Kurki et al., 
2020). For example, the flooding caused by Hurricane Florence on September 14, 2018 led to the 
closure of over 1,600 roads in NC and caused an estimated damage of $200 million (NCDOT, 
2019).  

Wildfire is a common hazard induced by fuel accumulation, seasonal precipitation variability, and 
frequent droughts (Li et al., 2019). Intini et al. (2019) defined a wildfire as “an unplanned and 
uncontrolled fire spreading through vegetative fuels, including any structures or other 
improvements thereon” (p.2473). Wildfire-induced smoke can adversely affect driving conditions 
by reducing visibility and potentially impacting the structural and infrastructural elements of 
roadways, highlighting the need for understanding these effects to enhance road safety (Intini et 
al., 2022). Therefore, wildfire can cause high-risk damage to human health, safety, and property. 
As an example, the Great Lakes Fire in the Croatan National Forest has an estimated cost of $12 
million (https://carolinapublicpress.org/65472/coastal-kindling-2-wildfire-risk-nc-coast-pocosin-
ecosystems-past-drainage-climate-change/).  

Landslide is a geophysical phenomenon that involves the movement of a mass of rock, earth, or 
debris down a slope. They pose significant risks to not only the landscape and human lives, but 
also infrastructural integrity and transportation networks. Landslides can severely disrupt 
transportation systems, leading to road blockages, destruction of bridges, and damage to 
underground pipelines. All of these can cause substantial economic losses and hinder emergency 
response efforts. The effective identification of areas potentially under the impact of landslides is 

https://www.readync.gov/stay-informed/north-carolina-hazards
https://carolinapublicpress.org/65472/coastal-kindling-2-wildfire-risk-nc-coast-pocosin-ecosystems-past-drainage-climate-change/
https://carolinapublicpress.org/65472/coastal-kindling-2-wildfire-risk-nc-coast-pocosin-ecosystems-past-drainage-climate-change/
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therefore crucial for enhancing safety and minimizing disruptions to the transportation network. 
The damage from landslides in the U.S. is over $1 billion on a yearly basis (USGS, 2023). As an 
example, the Pigeon River Gorge rockslide event in North Carolina led to over $10 million of 
direct and indirect cost (NCGS, 2005). 

2.2 Resilience of Transportation Systems and Resilience Analysis 

Transportation systems are vulnerable to accidents, weather, and especially to extreme events. 
Resilience analysis is an important approach that can assist decision making in transportation 
policy so as to improve the efficiency and recovery of the transportation networks (Ganin et al., 
2017; NASEM, 2021). Various definitions of resilience for transportation systems were proposed 
in the literature from different perspectives. Weilant et al. (2019) presented a detailed discussion 
on the definition of the resilience of a system within the context of transportation studies. Table 
2.1 shows the definitions of resilience used in the literature from a transportation perspective.  

 

Table 2.1. Definitions of resilience in transportation domain. 

Definitions of Resilience in Transportation Domain Reference 
“A system’s ability to maintain its demonstrated level of service or to 
restore itself to that level of service in a specified time frame” (p. 110) 

Freckleton et al. 
(2012) 

“The ability to prepare for and adapt to changing conditions and 
withstand and recover rapidly from disruption” (see Section 
Definitions) 

The White House 
(2013) 

“The ability to anticipate, prepare for, and adapt to changing conditions 
and withstand, respond to, and recover rapidly from disruptions” (see 
Section Resilience) 

FHWA (2014) 

The ability of a “…system recovery from additional disruptions” (p.1) Ganin et al. (2017) 
“The ability to prepare for and adapt to changing conditions and 
withstand and recover rapidly from disruption” (p.14) 

NASEM (2021) 

 

Freckleton et al. (2012) defined the resilience of a transportation system as the ability of a system 
to maintain and restore to a level of the service within a time period. Their study considered related 
resources that can potentially contribute to restoring the level of service. They quantified the 
resilience based on four groups of factors: individual resiliency, community resiliency, economic 
resiliency, and recovery metrics. The resilience score was derived via the weighted sum of these 
groups of factors. 

Ganin et al. (2017) defined resilience as an ability of “a system to recover from additional 
disruptions” (p.1) as opposed to normal condition. In this case, the normal operation of a 
transportation network system was estimated by the average daily efficiency of transportation. 
Moreover, traffic delays (i.e., changes in efficiency) due to stress or disturbances (e.g., accidents 



6 

 

or weather events) could be used to evaluate the resilience of a transportation system. Lower 
additional delay corresponded to higher resilience. Thus, resilience was quantified through 
additional delays. From a network science perspective, Ganin et al. (2017) focused on topological 
features of cities, rather than on recovery resources available. How the availability of alternate 
routes helps remediate the consequences of the initial disruption to the network was investigated 
in their study.  

The definitions and concepts of resilience of transportation systems have been well studied in the 
literature (see NASEM (2021)). A suite of conceptual frameworks of transportation resilience have 
been proposed (NASEM, 2021; Weilant et al., 2019). However, how to measure and analyze the 
resilience of transportation systems remains as a challenging topic. In particular, operational 
frameworks or tools that allow us for resilience estimation are of urgent needs for the resilience 
analysis of transportation systems (NRC, 2012). DOTs from different states in the U.S. have been 
working on the quantification of resilience so that the resilience of transportation infrastructures 
can be estimated, monitored, and analyzed (NASEM, 2021). The National Academy of Sciences 
(2021) conducted a systematic review about transportation resilience from an investment 
perspective. It outlined modern strategies in evaluating the resilience of transportation assets under 
the impact of natural hazards.  

The estimation of resilience of a transportation system often requires the analytics of individual 
components from different dimensions, including risks, vulnerability, and criticality (see NASEM 
(2021)). Table 2.2 summarizes these terms related to resilience estimation. Risk Analysis and 
Management for Critical Asset Protection (RAMCAP) is a resilience assessment framework 
developed by Brashear and Jones (2010). By the RAMCAP framework, the resilience of a 
transportation system is a model of risk from hazards and the criticality of transportation 
infrastructure. The risk of a transportation asset or infrastructure from hazards produced by 
extreme events is represented as the production of threat likelihood, vulnerability, and 
consequence. The estimation of transportation resilience thus consists of a series of steps, including 
asset characterization (transportation facility of interest), threat characterization (impact from 
hazards), consequence analysis (economic impact), vulnerability analysis, threat assessment, 
risk/resilience assessment, and risk/resilience management. The RAMCAP framework has been 
extensively applied and extended to investigate the risk and resilience of transportation systems 
(e.g., Colorado DOT and Utah DOT; see NASEM (2021)). The resilience analysis in this project 
follows the RAMCAP framework.  
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Table 2.2. List of resilience-related terms. 

Terms Description 
Exposure/threat Occurrence likelihood of a specific type of natural hazard on 

assets. 
Vulnerability/sensitivity Sensitivity of transportation systems to damage or 

disruption. In other words, how an asset will react (e.g., 
partially function, or totally damaged) to a specific 
magnitude of a particular natural hazard. 

Consequence Cost of a particular level of damage, or lost in 
functionalities for both users (e.g., drivers) and owners (e.g., 
DOT). This is commonly measured in U.S. dollars from an 
investment perspective 

Criticality Importance of infrastructures (e.g., asset, node, network) in 
terms of resilience of the transportation system. 

 

While resilience is a model of risk from hazards and criticality of transportation infrastructure, this 
model may be formulated differently. For example, Utah DOT (2020) used the reciprocal of the 
product of risk and criticality to represent the resilience in response to avalanches and earthquakes 
as in Equation 2.1. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1 / (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗  𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)     (2.1) 

where Resilience is the estimated resilience of a transportation asset (e.g., a road segment) in 
response to potential occurrence of different extreme events. Risk is an overall loss in U.S. dollars 
of a transportation asset in reaction to potential extreme events (calculated as the production of 
threat likelihood and consequence). Criticality is the importance of a transportation asset with 
respect to the resilience of the transportation system. The criticality is evaluated as a function of 
AADT, truck traffic, and redundancy. 

Colorado DOT (2020) applied the RAMCAP framework to estimate the annual risk of 
transportation assets in reacting to rock falls, floods, and debris flow. The resilience was then 
derived from a matrix of total annual risk (denoted as AnnualRisk in Equation 2.2) and criticality 
(noted as Criticality in Equation 2.2). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑚𝑚(𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)      (2.2) 

Thus, once risk and criticality components are assessed, the resilience of a transportation system 
can be estimated. The estimation of risks of a transportation system is based on the production of 
individual risk components, including threat likelihood, vulnerability, and consequence. In some 
studies, the risk of a transportation asset was calculated as the production of threat likelihood and 
consequence with an assumption of vulnerability as one (see UDOT (2020) and ADOT (2020)).  
The estimation of threat likelihood requires the understanding of hazards from extreme events that 
produce disruptions to the transportation system (or sub system) of interest, and the quantification 
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of the impact resulting from the exposure from these hazards (i.e., threat likelihood). Vulnerability 
represents the conditional probability that the damage from hazards will occur to transportation 
assets. Consequence is to evaluate the cost of the potential damage to the transportation asset from 
the perspectives of owners and users (e.g., drivers). Once these individual indicators or metrics are 
computed, the resilience of a transportation system can be quantified and analyzed.   
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3 Research Methodology 

In this section, we first discuss the types of extreme events (including landslide, wildfire, and 
flood) in NC that we investigated in this study and the resilience analysis framework used for 
transportation resilience estimation (Section 3.1). Then, we present geospatial data related to these 
extreme events (Section 3.2). After that, we focus our discussion on the calculation of individual 
components (including threat likelihood, criticality, risk, and consequence) of transportation 
resilience (from Section 3.3 to Section 3.7). In Section 3.8, we discuss spatial simulation modeling 
for scenario analysis. Section 3.9 focuses on discussing risk-based routing analysis. Section 3.10 
presents the design of scenario analysis experiment and its results. Section 3.11 reports the design 
and implementation of the web GIS dashboard and software related to the Geo-FRIT framework.  

3.1 Resilience Analysis of Extreme Events in North Carolina 

North Carolina has three major landforms from west to east: Mountains, Piedmont, and Coastal 
Plain (see Figure 3.1), each of which poses a unique challenge to the resilience of the transportation 
networks within them. Landslides pose a particular threat in the mountain area in the west of the 
state, which can cause severe damage to road surfaces and road closure. Wildfire is particularly 
relevant in the densely vegetated and road-intensive Piedmont area, which poses significant risks 
to nearby roads and causes closures. Floods frequently disrupt transportation due to their common 
occurrence during hurricanes or heavy rains overflowing nearby water bodies like streams and 
rivers, for which Coastal area (or Mountain) is featured. Therefore, we intentionally select 
landslides, wildfires, and floods as focal extreme events in this project. Addressing these extreme 
events supports NCDOT in enhancing the resilience and reliability of freight networks, ensuring 
continuity of operations and minimizing economic losses during extreme events. 

 

Figure 3.1. Three major geographic regions in North Carolina (county boundaries were used). 
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For this Geo-FRIT project, the risk and resilience analysis of transportation systems in response to 
extreme events in North Carolina is based on the theoretical framework developed by RAMCAP 
(Brashear & Jones, 2010). This resilience analysis framework has been applied to investigate the 
resilience of transportation systems in different US states or regions (e.g., Colorado DOT, Utah 
DOT; see NASEM (2021)). Based on this framework, the resilience of a transportation system is 
a model of annual risk and criticality of transportation infrastructure (see Figure 3.2 for conceptual 
illustration). The annual risk under the impact of a type of extreme event is a production of three 
metrics: threat likelihood, vulnerability, and consequence. In other words, to evaluate the resilience 
of a transportation system would require the analysis of these individual components. Specifically, 
using the resilience analysis framework for resilience estimation consists of the following steps: 
data collection, threat likelihood estimation, vulnerability estimation, consequence estimation, risk 
estimation, criticality estimation, and resilience estimation. The following subsections focus on 
these steps of resilience analytics. Note that vulnerability estimation is not conducted in this project 
as we do not have relevant data. In other words, it is assumed that the vulnerability metric remains 
as 1 in this project, which is the same as by Arizona DOT (ADOT, 2020) and Utah DOT (UDOT, 
2020). Thus, sections 3.2-3.7 cover data collection, threat likelihood estimation, consequence 
estimation, risk estimation, criticality estimation, and resilience estimation, respectively.  

 

Figure 3.2. Resilience analytics framework used in the Geo-FRIT project. 
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3.2 Data Collection 

3.2.1 Landslide Dataset 

We obtained landslides dataset from the North Carolina Geological Survey1. The dataset collected 
landslide events during 1991 to 2021 (see Figure 3.3). Each landslide occurrence is represented as 
a point-based event, and in total there are 4,794 landslide events documented in this database.  

 

 

Figure 3.3. Spatial pattern of landslide events during 1991-2021 (Most landslide events occurred 
in the mountain area of North Carolina). 

 

3.2.2 Wildfire Dataset 

Wildfire, as a type of common extreme event, is affected by multiple aspects, including fuel 
accumulation, seasonal precipitation variability, and frequent droughts (Li et al., 2019). Wildfire 
can produce severe damage to human health, safety, and properties. We collected the data of 
wildfire (see Figure 3.4) from the U.S. Department of Agriculture2 (USDA). The dataset covers 
wildfire events from 1992 to 2018, each of which is managed as a point-based feature. The wildfire 
events are classified as human, natural, or undetermined (missing or not specified) in terms of 
causes. In this project, we focus on the type of natural wildfire events. From the wildfire database, 
there were 112,454 events in NC from 1992 to 2018 (over 27 years). The largest natural wildfire 

 
1 https://experience.arcgis.com/experience/b55c8497d115400aa09d9cb7a27f5dc8/ 
2 https://www.fs.usda.gov/rds/archive/Catalog/RDS-2013-0009.5  

https://www.fs.usda.gov/rds/archive/Catalog/RDS-2013-0009.5
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event in NC is the Pains Bay fire in 2011. These wildfire events cover the mountain, piedmont and 
coastal plain regions in NC (see Figure 3.4). 

 

 

Figure 3.4. Spatial pattern of natural-caused wildfire events during 1992-2018. 

3.2.3 Flood Dataset 

Flooding can occur in any location, even far from water bodies. While river and coastal flooding 
are the most common types, other factors (such as heavy rainfall, poor drainage, or nearby 
construction) can significantly increase the risk of flood damage. For our analysis, we utilize 
floodplain management data (see Figure 3.5) from the Federal Emergency Management Agency3 
(FEMA), which delineates flood hazard zones based on the annual chance of flood hazard, ranging 
from 0.2% to 1%.  

 
3 https://msc.fema.gov/portal/home 
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Figure 3.5. Annual chance of flooding for North Carolina floodplains retrieved from the Federal 
Emergency Management Agency. 

3.2.4 Data Used in Resilience Estimation and Data Processing 

We collected a series of datasets for the estimation of resilience of transportation system in NC. 
Table 3.1 lists the information on these datasets including their sources. Table 3.2 shows the related 
spatial variable derived based on these datasets. 

Table 3.1. List of datasets collected for resilience analysis in this study. 
Dataset Source  Year URL 

Digital Elevation USGS 2012 https://www.usgs.gov/the-national-map-
data-delivery  

Precipitation NOAA 2000-2021 https://www.ncei.noaa.gov/maps/monthl
y-summaries/ 

Temperature  NOAA 2000-2021 https://www.ncei.noaa.gov/maps/monthl
y-summaries/ 

Stream NHD 2020 https://nhd.usgs.gov/userGuide/Robohel
pfiles/NHD_User_Guide/Feature_Catal
og/Hydrography_Dataset/Complete_FC

ode_List.htm 
Road NCDOT 2021 https://connect.ncdot.gov/resources/gis/

pages/gis-data-layers.aspx 
Forest Cover NCDA&CS 2016 https://www.nconemap.gov/datasets/0fd

aff9adcad441a8ab874228fa2792c/explo
re2016/explore 

Land Cover NLCD 2019 https://www.mrlc.gov/data 

https://www.ncei.noaa.gov/maps/monthly-summaries/
https://www.ncei.noaa.gov/maps/monthly-summaries/
https://www.ncei.noaa.gov/maps/monthly-summaries/
https://www.ncei.noaa.gov/maps/monthly-summaries/
https://nhd.usgs.gov/userGuide/Robohelpfiles/NHD_User_Guide/Feature_Catalog/Hydrography_Dataset/Complete_FCode_List.htm
https://nhd.usgs.gov/userGuide/Robohelpfiles/NHD_User_Guide/Feature_Catalog/Hydrography_Dataset/Complete_FCode_List.htm
https://nhd.usgs.gov/userGuide/Robohelpfiles/NHD_User_Guide/Feature_Catalog/Hydrography_Dataset/Complete_FCode_List.htm
https://nhd.usgs.gov/userGuide/Robohelpfiles/NHD_User_Guide/Feature_Catalog/Hydrography_Dataset/Complete_FCode_List.htm
https://connect.ncdot.gov/resources/gis/pages/gis-data-layers.aspx
https://connect.ncdot.gov/resources/gis/pages/gis-data-layers.aspx
https://www.mrlc.gov/data
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AADT NCDOT 2021 https://connect.ncdot.gov/resources/Stat
e-Mapping/Pages/Traffic-Volume-

Maps.aspx 
SoVI CDC 2020 https://www.atsdr.cdc.gov/placeandhealt

h/svi/index.html 
Roadway 

Classification 
NCDOT 2021 https://connect.ncdot.gov/resources/gis/

Pages/GIS-Data-Layers.aspx 
Freight NCDOT 2015 n/a 
Routing OpenStreetMap 2024 https://www.openstreetmap.org/ 

The digital elevation model (DEM) was obtained from United States Geological Survey4 (USGS) 
at a spatial resolution of 30 by 30 meters. Slope and aspect were derived from the DEM (using 
ESRI ArcGIS Pro). Meteorological factors, the rainfall and temperature using weather stations 
observation data, were spatially interpolated by using an inverse distance weighted (IDW) 
approach. For the stream data, it is a vector-based dataset of the stream segments or reaches that 
delineate surface water drainage system. It was originally developed at a 1:100,000 scale. Forest 
cover was based on the GeoTIFF tiles with a spatial resolution of 1 meter across North Carolina 
in 2016 from National Agriculture Imagery Program5 (NAIP). The National Land Cover Database6 
(NLCD) provides nationwide land cover data at a 30-m spatial resolution. Our drainage density 
and soil drainage were provided by USDA. We used Euclidean Distance tool in ArcGIS Pro to 
generate proximity factors, including distance to faults, streams, roads, high density population. 
AADT (Annual Average Daily Traffic) data are available at road segment level, including AADT 
for trucks and for vehicles. SoVI (Social Vulnerability Index) and freight value data are at the 
county level.  

These geospatial data are organized in GIS data formats and can be downloaded from the Web 
GIS dashboard of this project:  

https://sites.charlotte.edu/geofrit/downloads/  

Further, these datasets are published into geospatial web services, which can be accessed via the 
Web GIS dashboard (“Model Input”) here:  

https://sites.charlotte.edu/geofrit/dashboard/  

 

 

 

 

 
4 https://www.usgs.gov/the-national-map-data-delivery 
5 https://www.lib.ncsu.edu/gis/naip 
6 https://www.usgs.gov/centers/eros/science/national-land-cover-database 

https://sites.charlotte.edu/geofrit/downloads/
https://sites.charlotte.edu/geofrit/dashboard/
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Table 3.2. List of potential factors related to the estimation of transportation resilience. 

Factors Raw Data GIS Data Format 
Elevation DEM Raster 

Slope DEM Raster 
Aspect DEM Raster 
Rainfall Stations Raster 

Temperature Stations Raster 
Distance to faults Fault Raster 

Distance to streams Stream Raster 
Distance to roads Road Raster 

Distance to high density population Land cover Raster 
Forest cover Land cover Raster 
Land cover Land cover Raster 

AADT Truck AADT Vector (polyline) 
AADT Vehicles AADT Vector (polyline) 

SoVI SoVI Vector (polygon) 
Roadway Classification Roadway Classification Vector (polyline) 

Freight Freight Vector (polygon) 
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3.3 Calculation of Threat Likelihood and Annual Threat Likelihood 

3.3.1 Threat Likelihood Modeling  

To quantify the threat likelihood of a type of extreme event, we developed and used logistic 
regression and random forest models. These two models are confirmatory approaches that allow 
us to establish the empirical relationship between the occurrence of a type of extreme event and 
its driving factors. We applied logistic regression and random forest models to estimate the 
occurrence likelihood of landslide and wildfire. We chose the model with a better validation 
performance for estimating the threat likelihood of extreme events.  

Then, threat likelihood is converted into annual threat likelihood using the following form 
(Crovelli, 2000):   

𝐶𝐶𝑎𝑎 = 1 −  (1 − 𝑎𝑎)
1
𝑛𝑛𝑛𝑛              (3.1) 

where ap is the annual threat likelihood of an extreme event type associated with a road segment. 
p is the threat likelihood of the corresponding road segment. nt is the number of years that extreme 
events cover (i.e., time frame).   

Once the annual threat likelihood for a specific extreme event is estimated, it is organized in a 
GIS-based raster format (with a spatial resolution of 30m by 30m). Then, we applied spatial join 
within GIS environments to join the annual thread likelihood value from the raster data format to 
each road segment in NC road networks. That is, each road segment is added with annual threat 
likelihood for a specific extreme event (in total three annual threat likelihood values for landslide, 
wildfire, and flood are generated).   

3.3.2 Threat Likelihood Estimation of Landslide 

The identified factors for landslide occurrence include elevation, aspect, and slope. Elevation 
factors can significantly affect landslide occurrence, and it can interact with other factors, and their 
combined effects determine occurrence (Chau & Chan, 2005; Dai & Lee, 2002; Mousavi et al., 
2011 Mousavi, & Shirzadi, 2011). Aspect related parameters (such as exposure to sunlight, drying 
winds, and discontinuities) may control the occurrence of landslides (Feizizadeh et al., 2013). The 
steep slope and the high rainfall amounts correspond to high hazard index values in landslides 
(Abella & Van Westen, 2007). Slopes located closer to rivers are generally more vulnerable to 
landslides due to factors such as increased water infiltration, erosion, and the destabilizing effect 
of flowing water (Cebulski, 2022; Gómez et al., 2005). Therefore, distance to the river is involved 
in this analysis. Thus, the set of factors used for estimating landslide threat likelihood includes 
elevation, slope, rainfall, distance to fault, distance to river, and aspect. The variable of aspect is 
reclassified into 9 types (see Table 3.3). The dependent variable is the occurrence of landslide (1) 
or not (0)—i.e., a binary variable. As most of the landslide events occur in the mountain region, 
we focused on western NC for the modeling of landslide threat likelihood. We applied both logistic 
regression and random forest approaches to estimate the threat likelihood of landslide occurrence. 
Validation accuracy (76.3% for logistic regression, 82.69% for random forest) suggests the latter 
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approach (random forest) is preferred. Thus, in this study, we used the probability map generated 
from the random forest approach to represent the threat likelihood of landslides in NC, which was 
then converted into annual threat likelihood using Eq. 3.1 (see Figure 3.6 for a map).  

 
Table 3.3. Reclassification of the aspect variable. 

Class Aspect Degree 
1 Flat -1 
2 North 0 - 22.5 

337.5 - 360 
3 Northeast 22.5 - 67.5 
4 East 67.5 - 112.5 
5 Southeast 112.5 - 157.5 
6 South 157.5 - 202.5 
7 Southwest 202.5 - 247.5 
8 West 247.5 - 292.5 
9 Northwest 292.5 - 337.5 

 

 
Figure 3.6. Annual threat likelihood of landslide occurrence in North Carolina mountain area. 
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3.3.3 Threat Likelihood Estimation of Wildfire  

Topography metrics, such as slope and aspect, are of importance in wildfire occurrence as they 
affect airflow, local micro-climate, and solar radiation (Chang et al., 2022; Kumi et al., 2021; Van 
Hoang et al., 2020). Fire occurrence may be attributed to favorable conditions formed by high 
temperature and dry environment (Chang et al., 2022; Chuvieco & Salas, 1996). Further, the 
presence of water bodies may attenuate the development of wildfire. As most wildfire events have 
anthropogenic origin (deliberate or accidental), proximities to road and to areas with high 
population density may contribute to the explanation of wildfire occurrence (Chuvieco & Salas, 
1996; Nhongo et al., 2019; Zhang et al., 2016). Fire cannot occur without the availability of fuels. 
Thus, some forest types or proximity to forest may drive the development of wildfire (Kumari & 
Pandey, 2020; Taylor et al., 2005).  Considering these, we selected the following set of influential 
factors as independent variables: elevation, slope, aspect, distance to river, distance to road, 
temperature, rainfall, forest cover, distance to high population density, and land cover types7. The 
dependent variable is the occurrence of wildfire or not (as in a binary variable). According to 
Ayalew and Yamagishi (2005) and Lee and Pradhan (2007), the aspect variable can be reclassified 
(see Table 3.3). In this project, the aspect was regrouped into nine classes: flat, north, northeast, 
east, southeast, south, southwest, northwest and west as shown in Table 3.3. 

We applied both logistic regression and random forest modeling approaches to estimate threat 
likelihood. We used the accuracy metric to evaluate the validation performance of the two models. 
Validation accuracies of logistic regression are 68.5%, 62.84%, and 68.94% for mountain, 
piedmont, and coastal plain. For random forest, validation accuracies are 72.87%, 69.95, and 
74.34% for mountain, piedmont, and coastal plain. The results of performance metric, therefore, 
suggest that random forest model is preferred over logistic regression. Thus, in this study, we used 
the probability of wildfire occurrence generated from the random forest model to represent the 
threat likelihood of wildfire occurrence. The threat likelihood of wildfire occurrence is then 
converted into annual threat likelihood using Equation 3.1 (as in Section 3.3.1). Figure 3.7 shows 
the map of annual threat likelihood of wildfire occurrence in North Carolina.  

 

 
7 Landcover type includes developed areas, barren land, deciduous forest, evergreen forest, mixed forest, shrub, 
grassland, pasture, cultivated crops land, wetland. See details in the link: https://it.nc.gov/land-cover-working-group-
report-draft20180628/open  

https://it.nc.gov/land-cover-working-group-report-draft20180628/open
https://it.nc.gov/land-cover-working-group-report-draft20180628/open
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Figure 3.7. Annual threat likelihood of wildfire occurrence in North Carolina. 

 

3.3.4 Threat Likelihood Estimation of Flood 

We used the annual chance of flood from FEMA to estimate the annual threat likelihood of flood 
events in NC (see Figure 3.8). Since flood dataset from FEMA has annual chance of flood hazard 
for floodplains across the state, we directly assigned these flood hazard probabilities to road 
segments located within the corresponding floodplains to quantify the flood threat likelihood for 
each segment. For road segments outside FEMA-designated floodplains, the flood threat 
likelihood was set to zero. 
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Figure 3.8. Annual threat likelihood of flood occurrence in North Carolina. 
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3.4 Estimation of Consequence 

3.4.1 Calculation of Consequence at a Road Segment Level 

The calculation of consequence is conducted at the road segment level (in polyline). The metric of 
consequence consists of two components: owner consequence and user consequence (see Equation 
3.2). Owner consequence is basically the cost from the owner side, which includes the repair and/or 
replacement cost of a road surface. User consequence includes two parts, the additional expense 
to additional distance of detour and the wage loss of occupancies within the vehicles during the 
block of the road with respect to an extreme event. Note that the mathematical notations used in 
this section are consistent with those used in CDOT (2020). 

𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑂𝑂𝑂𝑂𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 +  𝑈𝑈𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  (3.2) 

The owner consequence (OwnerConsequence) is to estimate the cost of the asset owner (i.e., 
NCDOT) for replacing or repairing the damaged asset–a road segment here (see Equation 3.3). In 
this study, we represent the owner consequence of a road segment with the replacement cost of the 
segment. The replacement is with respect to the area to be replaced and the unit cost ($/sq. yard). 
The unit cost was set to $350/sq. yard as a rule of thumb (see CDOT (2020)), which can be further 
tuned to the cost in North Carolina as needed as it became a parameter in our model). The owner 
consequence was then calculated based on the width and length of each road segment.  

𝑂𝑂𝑂𝑂𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑊𝑊𝑅𝑅𝑊𝑊𝐶𝐶ℎ ∗  𝐿𝐿𝑅𝑅𝑅𝑅𝐿𝐿𝐶𝐶ℎ ∗  𝑈𝑈𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 +  𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑈𝑈𝑎𝑎 (3.3) 

where Width and Length are the spatial dimension for each road segment. UnitCost is the 
replacement cost for each unit area ($/sq. yard). CleanUp is the cleanup cost with $5,000 (a default 
value used by CDOT (2020)).  

The user consequence (see Equation 3.4) is used to estimate the cost of occupancies within the 
vehicles involved in road closure due to an extreme event. While road closure may be full or 
partial, in this project, we considered full road closure for the calculation of user consequence. 
Partial road closure could be considered in the future if relevant data are available. It includes the 
fuel expense due to additional detour distance (see Equation 3.5) and the wages loss because of 
the extra time for detour (see Equation 3.6). We used the annual average daily traffic (AADT) data 
(at road segment level) to estimate the number of cars that can be involved into the block of a 
specific road segment. The longest closure days due to an extreme event was used to indicate how 
long this road segment can recover back to use, where it kept causing users to detour during the 
closure. The coefficients used for user consequence calculation are shown in Table 3.4, consistent 
with those used by CDOT. 

UserConsequence = VOC + LW     (3.4) 

where VOC is the vehicle operation costs (see Equation 3.5) and LW is the lost wages (see Equation 
3.6). 
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VOC = ((C2 * AADTVehicle) + (C3 * AADTTruck)) * dFC * C7   (3.5) 

where:  

AADTVehicle = Average annual daily traffic (non-truck) 
AADTTruck  = Average annual daily truck traffic 

C2  = Vehicle running cost ($ / vehicle-mile) 
C3 = Freight running cost ($ / truck-mile) 
dFC =  Number of full closure days (days) 
C7  = Additional travel distance on detour (mile)  

 

LW = ((C4 * O * AADTVehicle) + (C5 * AADTTruck)) * dFC * (Dt / 60)  (3.6) 

where: 

AADTVehicle = Average annual daily traffic (non-truck) 
AADTTruck = Average annual daily truck traffic 

C4 = Average value of time ($/adult-hour) 
O = Average occupancy (adult/vehicle) 
C5 = Average value of freight time ($/truck-hour) 
dFC = Number of full closure days (days) 
Dt = Extra travel time on detour (minutes) 

 

Table 3.4. Coefficients use for user consequence calculation (adapted from Exhibit 3.11 in CDOT 
(2020)). 

User Cost Terms Coefficients Value Year  
Average vehicle occupancy O $1.77 2019 
Car running cost per mile C2 $0.59 2019 
Truck running cost per mile C3 $0.96 2015 
Average value of time per adult per hour C4 $10.62 2015 
Average value of freight driver cost per hour C5 $25.31 2015 

 

3.4.2 Detour Analysis via Shortest Path Routing 

The calculation of user consequence needs the use of detour information (i.e., extra travel distance 
and extra travel time), thus requiring detour analysis of a road network. In this project, we used 
shortest path algorithm to estimate the detour information. For each road segment (corresponding 
to a single origin-destination pair), we first calculated its shortest path as reference. Then, we 
removed the shortest path of the road segment and re-applied the shortest path computation—i.e., 
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the secondary shortest path was calculated. Thus, the difference between shortest path and 
secondary shortest path can be used to represent the extra travel distance and extra travel time of 
the corresponding road segment. Then, extra travel distance of a road segment was converted into 
extra travel time based on speed limit.   

The road network is represented as a directed graph for routing analysis, distinguishing between 
one-way and two-way roads. The calculation of the secondary shortest path for a road segment 
(corresponding to an origin-destination pair) is not applicable when the origin and destination are 
the two ends of a one-way road segment. To address this situation, we trace back to the predecessor 
of the origin node and the successor of the destination node until there are more than two outgoing 
and incoming roads at both nodes, ensuring at least one alternative route. This tracing back 
operation stops if such nodes are found, or the depth of the tracing operation reaches a predefined 
threshold (set to 5 in this project). If predecessor and successor nodes are found, then the shortest 
path between the two nodes is used as the secondary shortest path of the road segment of interest. 
For the latter case, there is no secondary shortest path for the road segment of interest. This tracing 
back approach, also used by UDOT (2020), allows for automated routing analysis to calculate 
extra travel distance or time as otherwise a manual approach has to be applied to go through each 
of these situations one by one.  

The routing analysis and the spatial join for the results of routing analysis from the OSM road 
network to NCDOT road network poses potential computational challenges due to the large 
number of road segments across North Carolina. The routing analysis was conducted for each 
segment of the entire OSM road network, which includes in total 1.5 million road segments. We 
implemented the routing analysis using OSMnx (an open-source Python library based on 
NetworkX; see https://osmnx.readthedocs.io/) within Python environment (see Section 3.11 for 
more information on implementation). 

To address the computational challenge related to routing analysis, we leveraged high-
performance computing and parallel computing power from a high-performance computing cluster 
at our University Research Computing8 at the University of North Carolina at Charlotte. The total 
parallel computing time of routing analysis was 2.9 hours when using 400 CPUs. It is expected to 
be 452 hours if we run it on one computer (i.e., one CPU). For spatial join, we focused solely on 
those roads with NCDOT route class 1-3, which account for approximately one-sixth of the entire 
network. Using a high-end computing server (AMD Ryzen Threadripper PRO 5975WX 32-core 
CPU), the spatial join process was completed in around 50 minutes. If all road segments were 
included in the future, the estimated processing time would extend to about 5 hours. Therefore, the 
computational challenges should be carefully considered and resolved, especially when more 
scenario analysis and any whole-network detour analysis are needed in the future.  

  

 
8 See detailed computing resources: https://oneit.charlotte.edu/urc/research-clusters/ 

https://osmnx.readthedocs.io/


24 

 

3.5 Estimation of Risk and Annual Risk 

The risk of a transportation asset is the product of three metrics: threat likelihood, vulnerability, 
and consequence per the RAMCAP framework. The risk and annual risk of a transportation asset 
(a road segment here) in a transportation system is calculated as in the following formulas:  

𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∗ 𝑣𝑣𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶 ∗ 𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅     (3.7) 

𝐶𝐶𝑅𝑅𝑅𝑅𝐴𝐴𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 𝐶𝐶𝑎𝑎𝑖𝑖 ∗ 𝑣𝑣𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶 ∗ 𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅    (3.8) 

where riski and annualRiski are the risk and annual risk of a transportation asset (a road segment 
here) for a specific extreme event type i. api is the annual threat likelihood for event type i. 
vulnerability denotes the vulnerability of a transportation asset.  consequence is the consequence 
of a transportation asset from both owner and user perspectives. Please note that we assume the 
vulnerability of a transportation asset in this study as 1, but our software implementation of Geo-
FRIT supports the use of vulnerability as a spatial variable if its spatial data is available. The annual 
risk is further grouped into categories with respect to quantiles (equal interval of quantiles is used). 
The number of categories used in this study is 5 (1-5: lowest to highest risk). Thus, the total annual 
risk of the transportation system for all extreme event types is calculated as in the following:  

𝐶𝐶𝑅𝑅𝑅𝑅𝐴𝐴𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ 𝐶𝐶𝑅𝑅𝑅𝑅𝐴𝐴𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1       (3.9) 

where annualRisk is the total annual risk of a road segment. annualRiski is the annual risk for 
extreme event type i. n is the number of event types (n=3 in this study as three types of extreme 
events including landslide, wildfire, and flood are investigated). 

The total annual risk is calculated for NC road system shown in Figure 3.9 (NCDOT route class 
1-3 were used). Areas of very low total annual risk are typically found around major cities in NC 
such as Charlotte, Greensboro, Raleigh, and Fayetteville. This can be attributed to their redundancy 
in terms of alternative roads in these areas typically with dense transportation network. 
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Figure 3.9. Total annual risk of North Carolina road system (NCDOT route class 1-3 were used). 
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3.6 Criticality Estimation 

According to NASEM (2021), criticality is a measure of the importance of the function of the 
transportation asset, node, network, or system. Criticality in transportation refers to the level of 
importance or significance assigned to specific transportation routes, modes, or infrastructure 
based on their impact on the overall functioning of transportation systems and the consequences 
of their disruption or failure (NASEM, 2021). Therefore, Colorado DOT developed a criticality 
measure to assess the highway system operation (CDOT, 2020). CDOT (2020) follows the 
framework proposed by RAMCAP to estimate the annual risk and criticality of transportation 
assets in reacting to rock falls, floods, and debris flow. In this project, we used the CDOT’s 
approach to build the criticality model for NC road networks.  

Determining asset, node, network, or system criticality serves two main purposes (CDOT, 2020). 
First, due to resource limitations, it is not feasible economically for agencies to upgrade all assets 
to the highest level of resilience against every possible hazard. Instead, specific mitigation 
measures are implemented at locations with a high likelihood of significant damage. Second, 
understanding the relative criticality of assets within a transportation system allows for evaluating 
risk, prioritizing emergency response plans, and identifying potential improvements in alternate 
routes when a critical link is at a high risk of failure. According to Colorado Resilience Plan, the 
criticality model intended to capture the social, environmental, and economic considerations to 
improve resilience (CDOT, 2020). In this project, we incorporated four factors into the model (see 
Figure 3.10), which are Average Annual Daily Traffic (AADT), the Association of American State 
Highway and Transportation Officials (AASHTO) Roadway Classification, Freight Value at the 
county level in millions of dollars per year, and Social Vulnerability Index (SoVI) at the county 
level.  

Further, AADT and roadway classification data were directly from NCDOT (available for each 
road segment). However, freight and SoVI data are originally available at county level (associated 
with each county polygon). Thus, we applied GIS-based spatial join operation to join the freight 
and SoVI data (from polygon) to the NCDOT roadway data (in polyline).   

In Table 3.5, the data of the four criticality factors is categorized into five quantiles, each assigned 
with an index value ranging from one (very low criticality) to five (very high criticality), 
representing varying levels of criticality (CDOT, 2020). The collection year of the data used in 
this project was shown in Table 3.1.  
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Figure 3.10. Maps of factors for criticality estimation (a. Roads, b. AADT, c. Freight flow value 
per ton, and d. SoVI). 

 

Table 3.5. Criticality factors and corresponding ranking thresholds. 

Factor 1 
Very Low 

2 
Low 

3 
Moderate 

4 
High 

5 
Very High 

Weight 

AADT (Annual 
Average Daily 

Traffic) 
50 – 1600 1,601 – 3,500 3,501 – 6,700 6,701 – 

13,000 > 13,000 1/4 

Roadway 
Classification 

Minor 
Collectors 

Major 
Collectors Minor Arterial Principal 

Arterial 

Interstate 
Freeway 

Expressway 
1/4 

Freight ($millions) 149.24 – 
1,543.73 

1,543.74 – 
2,735.55 

2,735.56 – 
5,466.83 

5,466.84 – 
10,251.84 > 10,251.85 1/4 

SoVI (Social 
Vulnerability Index) ≤ 0.19 0.2 – 0.39 0.4 – 0.6 0.61 – 0.8 > 0.81 1/4 
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The way that criticality score is estimated is based on that used by CDOT (2020). The criticality 
score (noted as CriticalityScore) of a transportation asset is calculated using the weighted sum of 
individual factors associated with the asset as in the following equation:  

𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖 = 𝑂𝑂1 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝑂𝑂2 ∗ 𝑅𝑅𝐶𝐶𝐶𝐶𝑊𝑊𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝑖𝑖  + 𝑂𝑂3 ∗ 𝐹𝐹𝐶𝐶𝑅𝑅𝑅𝑅𝐿𝐿ℎ𝐶𝐶𝑖𝑖  + 𝑂𝑂4 ∗ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑖𝑖 (3.6) 

where i is the transportation asset i. AADT is the average annual daily traffic of the asset. 
RoadwayClassi is the roadway classification of the asset. Freight is the freight value and SoVI is 
social vulnerability index associated with the asset i. Regarding weights, we set 
w1=w2=w3=w4=0.25 (same for each factor here).  

Based on a relatively low-medium-high split ratio 50-25-25 (as used by CDOT), NC roadways 
(NCDOT route class 1-3 were used) were grouped into low-, medium-, and high-criticality with 
actual percentages of 57.8%, 31.5%, and 10.7% (see Table 3.6). The suggested split ratio is 
essentially used to guide binning strategy (i.e., quantile classification method) for relative 
criticality of a road system. The actual split ratio can be different across various road systems 
depending on the distribution of the scores. For example, if the expected 50th percentile score value 
is 13.5, all roads with scores under 13.5 (i.e., less than or equal to 13 since score is integer) will be 
categorized in to low criticality, while the actual proportion of this group can be over 50% (i.e., 
57.8% in our case).  

Figure 3.11 shows the map of criticality of NC transportation system. The high-criticality area is 
around Gastonia, Charlotte, Winston-Salem, Greensboro, High Point, Durham, and Fayetteville. 
Regarding interstate highway, I-85 and I-95 are highly critical.  

 

Table 3.6. Criticality level and corresponding score ranges using a 50-25-25 binning strategy (50-
25-25 indicates an expected split ratio of low, medium, high criticality groups). 

Criticality Level Score Range Percentage 
Low 4 to 13 57.8% 

Medium 14 to 16 31.5% 
High 17 to 20 10.7% 
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Figure 3.11. Criticality level of North Carolina road system (NCDOT route class 1-3 were used). 
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3.7 Estimation of Resilience 

The resilience of a transportation asset in a transportation system is a model of risk and criticality 
based on the RAMCAP framework. In this project, the estimation of resilience metric is conducted 
at a road segment level using the following formula: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑓𝑓(∑ 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1 ,𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)     (3.10) 

where Resilience is the composite resilience of a transportation asset (i.e., a road segment in this 
project) in a transportation system. AnnualRiski is the individual risk of the transportation asset in 
response to extreme event type i (landslide when i=1; wildfire when i=2; flood when i=3). f(.) is 
the model of resilience estimation. 

A look-up table approach (see Table 3.7) is used to evaluate the resilience of a transportation 
system from its annual risk and criticality (i.e., model f(.) in the formula above). Annual risk and 
criticality are organized into different categories based on their quantile. In this study, the number 
of categories that we used for annual risk is 5 (1-5: lowest to highest risk), and the number of 
categories for criticality is 3 (1: low criticality; 2: medium criticality; and 3: high criticality). The 
resilience metric varies from 5 (highest resilience) to 1 (lowest resilience), or A to E (used by 
Colorado DOT).  

 

Table 3.7. Lookup table for resilience estimation from criticality and total annual risk. 

 Criticality 
Annual Risk 1 (Low) 2 (Medium) 3 (High) 
1 (20% percentile) 5 4 3 
2 (40% percentile) 4 4 3 
3 (60% percentile) 3 3 3 
4 (80% percentile) 3 3 2 
5 (100% percentile) 2 2 1 

 

The resilience of a transportation asset in response to a specific type of extreme event is a function 
of its own annual risk (instead of composite) and criticality. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑓𝑓(𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)     (3.11) 

where Resiliencei is the resilience of a transportation asset for extreme event type i. AnnualRiski is 
the annual risk of the asset for event type i. Criticality is the criticality of the transportation asset. 
f(.) is the model of resilience estimation, which is implemented using a lookup table approach same 
as in Table 3.7.  

Figure 3.12 shows a map of resilience for the North Carolina road system (NCDOT route class 1-
3 were used). Roads surrounding large cities (e.g., Charlotte) tend to have low resilience due to 
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their high criticality. For more maps of resilience and their individual components (including threat 
likelihood, consequence, risk, and criticality) for specific extreme event types, one is encouraged 
to see the Web GIS dashboard of this project (“Model Output”) at  

https://sites.charlotte.edu/geofrit/dashboard/ 

 

 

Figure 3.12. Resilience level for the North Carolina road system (Level A-E is from highest to 
lowest resilience; NCDOT route class 1-3 were used). 

  

https://sites.charlotte.edu/geofrit/dashboard/
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3.8 Spatial Simulation for Scenario Analysis of Freight Routing 

Scenario analysis is a method employed to assess the potential implications of various extreme 
events. In the context of freight routing, scenario analysis allows us to explore and understand the 
implications of extreme events, such as natural disasters, and accidents on the transportation 
network. Specifically, examining freight routing through scenario analysis allows us to 
comprehend the reactions of freight networks when there were disruptions; moreover, it 
contributes to the understanding of how the function was recovered from such incidents. Utilizing 
spatial simulation techniques can depict various extreme events with diverse severity and explore 
the spatial and temporal behaviors of the transportation systems. From this scope, our aim is to 
conduct spatial simulations to support scenario analysis. Depending on the types of identified 
external events, different modeling approaches can be used to simulate the occurrence of the events 
in various severity scenarios.  

In this study, we developed a spatial simulation model based on a convolution approach (Smith, 
1997) to simulate scenarios for the representation of alternative severity of extreme events. The 
convolution-based spatial simulation approach is applied to the threat likelihood surface of an 
extreme event type. Convolution is fundamentally a mathematical approach that uses the 
integration of functions to modify the shape of a function (e.g., surface in this study). Convolution 
has been extensively applied to a variety of domains, including deep learning, digital signal 
processing, and pattern recognition9. This convolution-based approach allows for generating or 
updating a continuous representation (3D surface) of a geospatial variable (see Figure 3.13 for 
illustration). Specifically, for a location on threat likelihood surface (raster here), the value of the 
threat likelihood at the location is changed to a quantile (as known as inverse of cumulative 
probabilistic function) of the threat likelihood variable within a convolutional window (i.e., 
convolution kernel). This convolution operation is similar to the pooling operation widely used in 
convolutional neural networks for deep learning (Gu et al., 2018). This convolution operation is 
applied to each location in the study region (each raster cell in a raster of threat likelihood is 
traversed) to generate a new threat likelihood surface.  

 
9 https://en.wikipedia.org/wiki/Kernel_(image_processing) 
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Figure 3.13. Illustration on the convolution-based spatial simulation approach for representing the 
threat likelihood of an extreme event in different severities (60th percentile was used as an example 
here). 

 

By using alternative quantiles of the spatial variable within local context, threat likelihood surfaces 
that correspond to various threat severities can be generated (simulated) for scenario analysis. The 
quantile of a threat likelihood surface within a local convolution window functions as a parameter 
of threat severity—increase in this parameter tends to generate a threat likelihood surface with 
high threat severity on average for a specific extreme event type (due to, for example, change in 
frequency, magnitude, or duration of these events). Sensitivity analysis experiments can be 
designed by varying this severity parameter (one-at-a-time analysis; see Hamby (1994)). This 
convolution-based simulation approach can be applied to any extreme events for scenario analysis 
once the threat likelihood surfaces are available.    
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3.9 Risk-based Routing Analysis 

To take into account risk into routing analysis, in this project we implemented a risk-based routing 
analysis approach. Specifically, routing analysis is based on the minimization of weights of road 
segments. This weight can be represented using travel distance, travel time, and impact from 
extreme events. The weight of a road segment can be formulated using the following formula as 
in Equation 3.12.  

𝑂𝑂𝑖𝑖 = 𝑂𝑂𝑅𝑅𝑅𝑅𝐿𝐿ℎ𝐶𝐶 ∗ (1 + 𝛽𝛽𝑖𝑖 ∗ 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)                          (3.12) 

where wi is the weight that takes into account risk from a specific extreme event type i for a road 
segment. weight is the original weight (e.g., travel distance or time) of the road segment before 
risk information is considered. riski denotes the risk (or annual risk) of a specific extreme event 
type i. βi is the scaling coefficient that can be adjusted for specific extreme event type i. Thus, by 
adjusting coefficient βi, we can take into account risks and the level of risks from extreme events 
for routing analysis. For example, when βi=0, no risk information is considered for routing 
analysis. Optimal paths from routing analysis will be based on the minimization of risks from 
extreme events when wi=riski. If routing analysis needs to consider both travel distance/time and 
risks, then wi=weight*(1+ βi*riski).  

Note that the risk in risk-based routing analysis here generally refers to the threat impact from 
extreme events instead of specific risk definition used in the resilience framework. This is because 
the specific risk definition is based on the production of threat likelihood, vulnerability, and 
consequence. However, the estimation of consequence (both owner consequence and user 
consequence) requires the use of routing analysis for estimating extra travel distance and time. To 
avoid this recursion situation, we use threat likelihood of an extreme event type for risk-based 
routing analysis (Erkut & Verter, 1998). That is, Equation 3.12 becomes the following equation:  

𝑂𝑂𝑖𝑖 = 𝑂𝑂𝑅𝑅𝑅𝑅𝐿𝐿ℎ𝐶𝐶 ∗ (1 + 𝛽𝛽𝑖𝑖 ∗ 𝑎𝑎𝑖𝑖)                       (3.13) 

where pi denotes the threat likelihood of an extreme event type i. Othe notations are the same as 
in Equation 3.12.   

In this study, routing analysis is based on OpenStreetMap (OSM) data10. NCDOT road network 
data is not suitable for being directly used for routing analysis because of the following: 1) network 
topology as required by routing analysis is not available in the NCDOT road network dataset and 
2) to build network topology would require significant amounts of work. We used two open-source 
software platforms for routing analysis: 1) pgRouting11 (based on open-source geospatial 
database), and 2) OSMnx12 (a Python library that uses OpenStreetMap data for routing). In 
particular, the OSMnx library provides more flexibility for shortest path routing. Once weights of 
road segments are determined and updated, routing analysis can be conducted. We used Dijkstra 
algorithm as the shortest path algorithm for routing analysis in this study. Once routing analysis is 
complete, the information on shortest paths from OpenStreetMap data is spatially joined back 

 
10 https://www.openstreetmap.org/about 
11 https://pgrouting.org/ 
12 https://osmnx.readthedocs.io/en/stable/ 
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(spatial join via an open-source Python package GeoPandas; see https://geopandas.org/) to 
NCDOT road network data. 
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3.10 Scenario Analysis of Risk-based Routing Analysis 

We designed an experiment that uses different scenarios in terms of the severity of extreme events 
to examine the utility of the Geo-FRIT framework. The extreme event type that we used for this 
experiment is landslide. We used five treatments for scenarios of severity of landslide phenomena 
in NC. The values of the convolution parameter of the spatial simulation model for these treatments 
(noted as T1, T2, T3, T4, and T5) are 0%, 25%, 50%, 75%, and 100%, corresponding to scenarios 
of very low risk, low risk, medium risk, high risk, and very high risk (note that risk here is generic). 
Thus, five threat likelihood surfaces were simulated (see Figure 3.14). We randomly picked 1,000 
origin-destination pairs in the western NC as the majority of the landslide events occurred in this 
region. Risk-based routing analysis of these 1,000 origin-destination pairs was conducted. The 
coefficient parameter (βi) for risk-based routing as in Equation 3.13 was set to 100.0. Figure 3.15 
shows a map of shortest paths of five scenarios for a single origin-destination pair. Table 3.8 shows 
results of risk-based routing analysis for these scenarios in response to landslide with various 
severities.  

 

Table 3.8. Results of additional travel time and travel distance in response to risk-based routing 
analysis under different scenarios in terms of the severity of extreme events (results are based on 
the average of 1,000 origin-destination pairs). 

Treatment Scenario Mean Additional 
Time (second) 

Mean Additional 
Distance (meter) 

Mean Additional 
Impedance (no unit) 

T1 Very Low Risk 21.41 1,315.86 751.96 
T2 Low Risk 57.58 2,194.15 1,779.46 
T3 Medium Risk 110.25 3,811.99 2,845.62 
T4 High Risk 196.60 5,071.89 4,554.39 
T5 Very High Risk 488.57 9,093.49 9,776.48 
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Figure 3.14. Maps of landslide threat likelihood for different treatments in the scenario analysis 
experiment (A: Reference; B: Treatment 1 (very low risk); C: Treatment 2 (low risk); D: Treatment 
3 (medium risk); E: Treatment 4 (high risk); F: Treatment 5 (very high risk)). 
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Figure 3.15. Map of shortest paths of a single origin-destination pair under different scenarios of 
landslide risks. 
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3.11 Web GIS Dashboard and Software Implementation  

Figure 3.16 illustrates a software-level framework regarding the implementation of the Geo-FRIT 
system. All the geospatial data in this project are organized into GIS data formats: ESRI Shapefile 
for vector-based GIS data and ArcGrid or GeoTiff for raster-based. These geospatial data were 
processed in ESRI ArcGIS Pro. We used ArcGIS Online to publish these data (including model 
input and output) to geospatial web services. A Web GIS dashboard was developed to integrate 
these geospatial web services. The URL of the Web GIS dashboard is: 
https://sites.charlotte.edu/geofrit/dashboard/ 

 

 
Figure 3.16. Software implementation of the Geo-FRIT framework for spatially explicit resilience 
analysis. 

 

This Web GIS dashboard is implemented using the integration of WordPress13 (for client-side 
interface) and ArcGIS Online (for geospatial web services, including maps and data). The 
resilience analytics module was implemented in Python (version 3.10) with support of packages 
including GeoPandas14, rasterio15, and rasterstats16. We used Python to implement GIS-based 
scientific workflows to automate the computation of resilience analytics. The threat likelihood 

 
13 https://wordpress.org/ 
14 https://geopandas.org/en/stable/  
15 https://rasterio.readthedocs.io/en/stable/  
16 https://pythonhosted.org/rasterstats/  

https://sites.charlotte.edu/geofrit/dashboard/
https://wordpress.org/
https://geopandas.org/en/stable/
https://rasterio.readthedocs.io/en/stable/
https://pythonhosted.org/rasterstats/
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estimation of landslide and wildfire was conducted in R, an open-source statistics software. The 
routing analysis (for detour analysis and risk-based routing analysis) was implemented in 
NetworkX17 and OSMnx, open-source Python libraries that can use OpenStreetMap data for 
shortest path routing.  

We also implemented a web-based GIS portal to support on-demand routing analysis. The 
web GIS portal is available via the Geo-FRIT web dashboard (see Figure 3.17). Users can use this 
web portal to conduct routing analysis with or without the consideration of transportation risks for 
multiple origin-destination pairs. These origin-destination pairs can be specified by users (via 
uploading a text file of coordinates) or randomly generated. This web GIS portal is hosted on a 
web server at UNC Charlotte.   

The resilience analysis module allows for the computation of resilience estimation when model 
input (including data or parameters) is updated. Appendix 1 shows a sample parameter 
configuration file of the module. Users can specify or customize datasets or parameters to their 
specific study regions as needed. Once the resilience metrics are updated, relevant geospatial data 
(model output) can be automatically synchronized to the ArcGIS Online dashboard via ArcGIS 
API for Python. Otherwise, each of the geospatial data needs to be updated and re-configured 
manually.   

The web site of the Geo-FRIT system is available at this URL:  

https://sites.charlotte.edu/geofrit/  

Figure 3.17-3.20 show snapshots of the Geo-FRIT website. The web site includes five main web 
pages: 1) Home, 2) Dashboard, 3) Downloads, 4) Routing Analytics, and 4) Team Members. The 
Home web page introduces the Geo-FRIT project. The Dashboard web page hosts the Web GIS 
dashboard for the mapping of model input and output of the resilience analytics tool. The 
Downloads web page provides an interface for users to download GIS data related to the Geo-
FRIT project. The Web GIS functionality was implemented in ESRI ArcGIS Online. Once the 
Python-based resilience analytics tool is run, model output as in GIS data will be automatically 
synchronized and updated to this Web GIS dashboard. This automatic synchronization and update 
functionality was implemented by using ArcGIS API for Python 
(https://developers.arcgis.com/python/latest/).  

 
17 https://networkx.org/  

https://sites.charlotte.edu/geofrit/
https://developers.arcgis.com/python/latest/
https://networkx.org/
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Figure 3.17. Snapshot of the home page of the Geo-FRIT web site (the web site includes four main 
menus: 1) Home, 2) Dashboard, 3) Downloads, 4) Routing Analytics, and 4) Team Members; 
URL: https://sites.charlotte.edu/geofrit/). 

https://sites.charlotte.edu/geofrit/
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Figure 3.18. Snapshot of the Web GIS dashboard of the Geo-FRIT web site (A: model input; B: 
model output). 

A 

B 
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Figure 3.19. Snapshot of the data download interface of the Geo-FRIT web site (each dataset has 
a web map interface). 
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Figure 3.20. Snapshot of the routing analytics interface of the Geo-FRIT web site. 
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4 Findings and Conclusion 

Risk and resilience analysis are of critical importance for investigation on the resilience of 
transportation systems. The resilience analysis framework and associated geospatial tools provided 
in this Geo-FRIT project empower spatially explicit resilience analysis of transportation systems 
in response to alternative types of extreme events in NC. To efficaciously utilize this Geo-FRIT 
framework and tools for resilience analysis would require the use of the following steps: data 
collection, threat likelihood estimation, consequence estimation, risk estimation, criticality 
estimation, and resilience estimation. The Geo-FRIT framework implements detour analysis, risk-
based routing analysis, and spatial simulation, which provide solid support for the estimation of 
resilience metrics and the evaluation of impacts of extreme events on transportation resilience.  
Specific findings of this project are listed below.  

1) Collection of data related to threat, transportation asset, environmental variables, and 
socio-economic variables serve as foundation for transportation resilience estimation. 
These spatial or spatiotemporal data are often organized in different GIS data formats, 
spatial resolutions or scales. Thus, appropriate geoprocessing and integration of these 
diverse data warrant the generation of model inputs for subsequent resilience analysis.  
 

2) Specific approaches or models need to be developed for threat likelihood modeling of 
alternative types of extreme events, depending on, for example, the availability of relevant 
data and the driving mechanisms of extreme events. For example, in this project, logistic 
regression and random forest models were developed and used for estimating threat 
likelihood surfaces of landslides and wildfires as historic data for these two types of 
extreme events are available. However, floods may be driven by different processes or 
mechanisms such as hurricanes, extremely heavy rainfall, storm surge, or failure of 
hydraulic structures (e.g., dam). Thus, we opt to use FEMA’s flood chance map as an 
alternative of representing the threat likelihood of floods in NC.   
 

3) Consequence estimation includes the analysis of costs from the perspectives of both owner 
and user (i.e., owner consequence and user consequence). Detour analysis that requires the 
computation of shortest path routing is a necessary step. This detour analysis is often 
computationally challenging as each road segment in the road network of interest needs to 
be handled. Automated handling of routing analysis and pre-/post- data processing are of 
great help for this analysis at a road segment level. Further, the calculation of extra travel 
distance and time is achieved by the difference between shortest path and secondary 
shortest path.  
 

4) Risk metric of a transportation asset is typically represented in monetary value. The 
calculation of risk is a model of threat likelihood, vulnerability, and consequence. While 
the threat likelihood of a specific extreme event type on a transportation asset can be 
estimated from historical data, it is a cumulative threat likelihood (over the timespan of 
historic data) that needs to be converted into an annual level (i.e., annual threat likelihood).  
 

5) Risk-based routing analysis provides support for the consideration of the impact of extreme 
events into transportation routing. The incorporation of this impact is fundamentally a 
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multi-objective routing optimization problem (e.g., minimization of travel time while 
minimizing risks). The approach used in this project basically converts multiple objectives 
(two objectives: travel distance/time and risk) into a single-objective routing optimization 
for solutions. Routing analysis is conducted based on OpenStreetMap data instead of the 
NCDOT road network because the latter one would require a significant amount of work 
to be converted into the form that routing analysis can be applied. 
 

6) The spatial simulation model developed in this project is based on the direct manipulation 
of threat likelihood surfaces (maps) using a convolution-based approach. By varying the 
convolution parameter of the model, threat likelihood surfaces corresponding to extreme 
events with different levels of severity are generated. This allows us to design and analyze 
what-if scenarios to investigate the impact of extreme events on transportation routing so 
as to gain a better understanding of the resilience of transportation systems in NC. The 
experiment presented in this report demonstrates the what-if scenario analysis capability 
that the Geo-FRIT framework can provide.  
 

7) The routing analysis involved in the resilience estimation of NC road network is 
computationally demanding when the number of origin-destination pairs is large. For 
example, the detour analysis of the NC road network was applied at the road segment level. 
The traversal of all road segments for detour analysis and what-if scenario analysis using 
many origin-destination pairs would require considerable computational support.  
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5 Recommendations 

Drawing from the findings in Section 4, we propose the following recommendations that may be 
of help for future research and implementation directions:  

1) Transportation systems in North Carolina are under the impact of various types of extreme 
events. In this project, we focus our investigation on landslides, wildfire, and floods. It is 
recommended that more extreme events such as storm surge, earthquake, sea level rise, 
and emission of hazardous materials be investigated for resilience analysis in the near 
future. In particular, extreme events are often cascading (e.g., earthquake-induced 
landslide). The consideration of simultaneous extreme events may be necessary when 
multiple hazards are investigated together.  
 

2) Spatiotemporal data of various extreme events and transportation assets are essential in 
spatially explicit transportation resilience analysis. Once these data are ready, the resilience 
analysis module can be run (or re-run) to generate (or update) the risk, criticality, and 
resilience of NC roadway infrastructure. It is thus recommended that spatial data related to 
more extreme events are routinely collected and updated into the geospatial database of 
risks and resilience of NC transportation systems. Further, inventory and analysis of the 
transportation resilience over time would be of help for better understanding 
spatiotemporal change in the resilient capability of NC transportation system in response 
to extreme events at various spatial and temporal scales.  
 

3) The resilience analysis framework in this project focuses on road networks. It is 
recommended that this resilience analysis framework be applied to other transportation 
networks, for example, freight networks, rail networks, marine freight network, or air 
transportation network. This will be highly beneficial for the understanding of the 
resilience of overall transportation systems in NC. For example, a subset of NC road 
network can be developed to represent the NC freight network. The Geo-FRIT framework 
in this project can be adapted and applied to this freight network for spatially explicit 
resilience analysis of freight networks in NC.  
 

4) It is recommended that more resilience-related metrics be developed and evaluated. The 
resilience metric used in this project is just one of the resilience metrics proposed in the 
literature. The use of more resilience-related metrics (including risk and criticality) is of 
great help for the systematic evaluation of the resilience of NC transportation systems from 
different perspectives. For example, different criticality metrics can be used to evaluate the 
criticality of NC transportation infrastructure by incorporating more perspectives, for 
example network redundancy, health and safety (see NCDOT 2024). The resilience 
analysis module implemented in the Geo-FRIT systems provides solid support for the 
incorporation of more resilience-related metrics.   
 

5) It is recommended that multi-objective routing analysis be implemented for risk-based 
routing analysis. The current implementation of risk-based routing analysis is based on the 
transformation of bi objectives into a single composite objective. Multi-objective 
optimization provides more options for risk-based routing analysis that takes into account 
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a suite of transportation risks in the face of multiple extreme events. Further, high-
performance and cloud computing resources would need to be considered for conducting 
a large number of routing analysis that supports the estimation of resilience-related metrics 
such as consequence in this project or criticality that relies on the use of network 
redundancy metric (see UDOT 2020 and NCDOT 2024). 
 

6) It is recommended that a road network database directly based on NCDOT road network 
data be built for risk-based routing analysis. The current version of NCDOT road network 
data is not suitable for being directly used for routing analysis as it does not have network 
topology required for shortest path routing. Having such a NCDOT road network with 
network topology for routing analysis can avoid, for example, the matching of shortest 
paths calculated from, say, OpenStreetMap to NCDOT road network.  
 

7) It is recommended to conduct a systematic evaluation of the impact of alternative extreme 
event types on NC transportation systems. The spatially explicit resilience analysis 
framework and what-if scenario analysis capabilities implemented in this project can be 
adapted to specific extreme events. For example, the impact of urban development together 
with population growth on transportation resilience can be considered using spatial 
simulation modeling of urban growth (Tang & Yang, 2020). This can assist stakeholders 
(e.g., MPOs or RPOs) with transportation planning or management that needs the explicit 
consideration of system resilience in response to various types of extreme events.    
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6 Implementation and Technology Transfer Plan 

We plan to disseminate the research outcome of this project via a suite of approaches, including 
delivery of research products (e.g., data, code), conference presentation, and journal paper 
publication. We are planning to attend a series of conferences or workshops to present the spatially 
explicit resilience analysis work conducted in this project. At least two Ph.D. students are planning 
to use research topics related to the transportation risk and resilience studies for their dissertations. 
We are planning to prepare manuscripts to report research findings on high-quality journal outlets. 
At least two manuscripts will be prepared: the first paper focuses on presenting the overall 
transportation resilience framework and its applications to extreme event types specific to North 
Carolina. The second paper will concentrate on routing analysis, which provides substantial 
support for detour analysis and risk-based routing.  

Technology Transfer: Our Geo-FRIT system provides substantial support for the automated 
estimation of the resilience of NC transportation systems (specifically roadway infrastructure). 
The risk-based routing analysis is computationally challenging as this is applied to each road 
segment in the NC road network. For a large number of routing analysis, we could deploy them to 
the high-performance computing facilities at the Center for Applied GIScience at the University 
of North Carolina at Charlotte. We develop a web GIS dashboard for the management, analytics, 
and mapping of model input and output for transportation resilience. This Web GIS dashboard 
allows users to access to spatial data (including model input, output) related to resilience analysis 
for NC roadway system via a web-based interface. This Web GIS dashboard is hosted on a publicly 
accessible web server at CAGIS at UNC Charlotte. We use GitHub (an open-source software 
versioning platform; https://github.com/) to manage and update the software of the Geo-FRIT 
platform. All the code (e.g., Python scripts) are maintained in a GitHub repository (it can be made 
available contingent on request and with permission from NCDOT).   

  

https://github.com/
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Appendix 

Appendix 1. Sample parameter configuration file for the transportation resilience analysis module 
of the Geo-FRIT system.  

# ------------------------------ 
# Configuration File for Geo-FRIT Project 
# ------------------------------ 
 
[PATHS] 
 
# File paths for different data layers (relative to base_dir) 
 
# Social Vulnerability Index shapefile 
sovi = sovi_score.shp 
 
# Freight flow data shapefile 
freight = freight_flow_millionsdollars.shp 
 
# Road network shapefile 
road = ncdot.shp 
 
# Landslide risk raster 
landslide = landslide_risk.tif 
 
# Wildfire risk raster 
wildfire = wildfire_risk.tif 
 
# Flood risk shapefile 
flood = flooding_risk.shp 
 
# Detour routes GeoPackage 
detour = detour_results_all.shp 
 
# Output file for storing results 
output = NCDOT_road_resilience.shp 
 
[FIELD_NAME] 
 
# field name of threat likelihood from flood shapefile 
flood_fn = TL_Flood 
 
# field name of averaged social vulnerability indices (SOVI) from SOVI shapfile 
sovi_fn = SoVi 
 
# field name of sum of freight value from Freight shapefile 
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freight_fn = SUM_Value_ 
 
# field name of Annual Average Daily Traffic (AADT) for vehicles and trucks from NCDOT 
road network shapefile 
aadt_fn = AADT 
aadt_truck_fn = AadtTruck 
 
# field name of width and length or road segments from NCDOT road network shapefile 
road_width_fn=SrfcWidth 
road_len_fn=LaneMiles 
 
# field name of additional time (min) from detour shapefile 
add_time_fn = add_time 
add_dist_fn = add_distan 
[CONFIGURATIONS] 
# Configuration settings for risk and cost calculations 
 
# Replacement cost of road assets ($/sq yd) 
road_price = 350 
 
# Time horizon (years) for landslide and wildfire risk calculation 
n_year_landslide = 31                    
n_year_wildfire = 27                     
 
# Maximum distance (in meters) to join detour data with road data 
max_dist = 200                           
 
# Vulnerability factor (adjust based on vulnerability modeling) 
vulnerability = 1                        
 
# Vehicle and freight running costs ($/mile) 
C2 = 0.59                                
C3 = 0.96                                
 
# Value of time for occupants and freight ($/hour) 
C4 = 10.62                               
C5 = 25.31                               
 
# Average vehicle occupancy (people/vehicle) 
Occ = 1.77                              
 
# Cleanup cost for asset replacement after a disaster ($) 
cleanup = 5000                           
 
# Number of full closure days due to a disaster (days) 
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dfc = 10                                 
 
# NCDOT RouteClass values to filter road segments 
values_to_keep = 1, 2, 3, 81, 82, 80      
 
# Resilience matrix for criticality/risk calculation 
 
#The default resilience estimation matrix is as below (C for criticality and R fo risk): 
#    C1   C2   C3 
# R1  A    B    B 
# R2  B    C    C 
# R3  C    C    C 
# R4  C    C    D 
# R5  D    D    E 
 
resilience_matrix = A, B, B, \ 
                    B, C, C, \ 
                    C, C, C, \ 
                    C, C, D, \ 
                    D, D, E 
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